Water Audit Manual
FOREWORD

Municipal authorities and urban service providers are being increasingly challenged to deliver sustainable services in a rapidly urbanizing world with complex problems resulting from the interplay of climate change, resource constraints and the adverse effects of a sluggish world economy. The need to improve the coverage and efficiency of urban basic services, such as water supply, sanitation, energy, drainage and transportation, has never been greater.

It is now well recognized that the essential pre-condition for improvements in the delivery of urban services, is to establish effective and well run institutions within the framework of a policy environment that promotes investment, a commercial approach to service delivery, managerial autonomy and accountability to key stakeholders, including customers and the Government.

With its mandate to promote sustainable urbanization, UN-Habitat has been in the forefront of international efforts to build the capacity of urban water utilities to face the challenges of expanding access to water and sanitation while improving the efficiency of service delivery. Through its regional and national programmes and the Global Water Operators Partnership Alliance, UN-Habitat provides capacity building for urban water utilities with a focus on business planning, water demand management, improving billing and revenue efficiency, energy audits and planning for climate change adaptation.
The Lake Victoria Region Water and Sanitation Initiative is one of the regional programmes in Africa that has demonstrated the effectiveness of integrating capacity building for urban water utilities with modest investments to improve infrastructure. The first phase of the Initiative has now been completed with impressive improvements in extending access to water and sanitation while enhancing the managerial capacity and operational efficiency of the utilities in the ten pilot towns in Kenya, Uganda and Tanzania. The utilities which have benefited from the capacity building programme have experienced significant improvements in performance in key areas such as revenue enhancement, an expanded customer base and reductions in non-revenue water.

The six training manuals which are included in this Compendium of Training Materials are based on the practical experience of delivering the capacity building programme for urban water utilities in the Lake Victoria Towns. They encompass the key areas of utility management and operations and it is hoped that they will contribute to the knowledge base of training approaches and best practices in the water utility sector in small urban centers.

Joan Clos
Under-Secretary-General, United Nations
Executive Director, UN-Habitat
Small water utilities face unique challenges in delivering water and sanitation services to their customers. With a limited revenue base and few opportunities to benefit from economies of scale, they often suffer from severe skill shortages and a long legacy of underinvestment in infrastructure and capacity enhancement. To overcome these challenges, the small utilities need to maximize their operating efficiencies and ensure optimum utilization of their assets.

Since the year 2006, UN-Habitat has been working with national and regional partners in East Africa to implement the Lake Victoria Water and Sanitation Initiative (LVWATSAN) which seeks to address the water and sanitation needs of small secondary towns in the Lake Victoria Basin. A capacity development programme in utility management and operations has become an integral component of this Initiative, which was started in 10 towns and is now being expanded to another 15 towns in the 5 East African Countries which share the Lake Victoria Basin.

The implementation of LVWATSAN has generated a solid body of knowledge and experience in enhancing the capacity of small utilities to improve their financial viability and operating efficiencies. This experience has been applied to produce a series of Manuals which can be used as training materials to improve the operating performance of small utilities.
The Block Mapping Procedures Manual is part of a Compendium of Training Manuals for Small Water Utilities, produced by UN-Habitat in six (6) volumes, as follows:

Volume 3: Block Mapping Procedures Manual
Volume 4: Water Audit Manual
Volume 5: Leakage Control Manual
Volume 6: Reduction of Illegal Water Use Manual

The Manuals were produced through a collaborative effort between UN-Habitat and the National Water and Sewerage Corporation of Uganda within the framework of a fast track capacity building programme in utility management and operations which targeted seven small utilities in the towns around Lake Victoria.

Robert Goodwin
Unit Leader, Water and Sanitation
Urban Basic Services Branch
UN-Habitat
Nairobi, Kenya
ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Meter</td>
</tr>
<tr>
<td>NRW</td>
<td>Non Revenue Water</td>
</tr>
<tr>
<td>NWSC</td>
<td>National Water and Sewerage Corporation</td>
</tr>
<tr>
<td>UFW</td>
<td>Un-accounted for Water</td>
</tr>
<tr>
<td>QMS</td>
<td>Quality Management Systems</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>Hrs</td>
<td>Hours</td>
</tr>
<tr>
<td>No.</td>
<td>Number</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
</tbody>
</table>
GLOSSARY

Non Revenue Water

This is the difference between volume of water delivered to the distribution system and the volume of water sold (as a % of water delivered).

Water Audit

Refers to a periodic exercise of determining the water supplied, consumed and lost in the distribution system thus providing a utility with information to make effective O&M as well as investment decisions.

Water Balance

This is a schematic chart showing the different components of water supplied into the distribution system as well as water lost and/or used within the distribution system.
CONTENTS

Foreword iv
Preface vi
Abbreviations & Acronyms viii
Glossary ix

1. Introduction 1
 1.1 Rationale 2
 1.2 Scope and Objectives 2
 1.3 Manual outline 3

2 Operating procedures 4
 2.0 The Water Balance 5
 2.1 Definition of Key Variables in the Water Balance 5
 2.3 Importance of Computing the Water Balance 10
 2.4 Benefits of Non Revenue Water Reduction 11
 2.5 Practical Water Audit Report Writing and Understanding the Water Balance 13
 2.6 Example of a Typical Water Balance of Water Balance Report 21
 2.6.1 Typical Water Balance Report – Input Data 22
 2.6.2 Typical Water Balance Report – Results 27
3. **Key Result Areas and Performance Indicators** 32
 3.1 Key Result Areas 33
 3.2 Performance Indicators 33
 3.3 Monitoring and Evaluation of Indicators 34

4. **Requirements** 36
 4.1 Equipment 37
 4.2 Human Resource 37

APPENDICES 39
CHAPTER 1

Background

Repairs in the water pump house. Photo © UN-Habitat
Water Utilities have an important responsibility to provide safe and reliable supplies to their customers. The Water Audit manual gives guidance on all aspects from when water gets to the distribution system to when water finally gets to the consumer.

The Lake Victoria Region Water and Sanitation Initiative has provided many useful lessons on the procedures and systems to be followed in addressing the problem of Non revenue water, water audit and water balance. Key lesson learnt is that water balance can effectively reduce Non revenue water. It is a framework for assessing a utility’s water loss situation, gives direction for improvement, serves as a communication tool and gives guidance required in prioritization and investment of limited resources.

Small urban utilities, with all the challenges that they face, cannot afford to lose water through illegal connections, meter tampering and other forms of illegal water use. They are encouraged to systematically confront this problem by adopting the procedures outlined in this Manual.
1.1 Rationale

The rationale for preparation of the manual is to have documented and streamlined procedures for implementation of activities. The documented procedures are to ensure that staff carries out their roles and responsibilities with minimum supervision and new staff quickly copes up with the requirements for their jobs. This conforms to the overall water sector perspective of designing and implementing Quality Management Systems (QMS).

1.2 Scope and Objectives

The scope of this water balance manual shall cover all aspects from the water supplied to the distribution system as well as water losses and/or used with the distribution system and what eventually reaches to the customer’s premises and is billed/converted into revenue for the utility. The manual covers the procedures for determination of the various components of the water balance.

The objectives of preparation of the water balance are to:

i. ease assessment of the utility’s water loss situation

ii. improve understanding and identification of problems/issues pertaining to reduction of unaccounted for water and enhance effectiveness of its improvements through more reliable data

iii. enhance meaningful benchmarking with other service providers
iv deepen understanding of the water balance for purposes of prioritising attention and investments

1.3 Manual outline

Chapter one contains the background, rationale, scope and objectives of the manual.

Chapter two details the operating procedures which is the main purpose of this manual and

Chapter three entails the key result areas and the performance indicators that help the management to set realistic targets for the implementing team, and aid decision making as well.

Chapter four details the logistics required for implementation, this also includes the human resource, equipment and or skills and abilities required for the key team.
2.0 The Water Balance

Whereas water audit refers to the conducting of periodic exercises to determine water supplied into the distribution system as well as water lost and/or used within the distribution system, the water balance chart is the tool used to enhance a meaningful water audit report.

2.1 Definition of key variables in the water balance

i. System Input Volume

The volume of treated water input to that part of the water supply system to which the water balance calculation relates.

ii. Authorized Consumption

The volume of metered and (or) unmetered water taken by registered customers, the water supplier and others who are implicitly or explicitly authorized to do so for residential, commercial and industrial purposes. Authorized consumption may include items such as fire fighting and training, flushing of mains and sewers, these may be billed or unbilled, metered or unmetered.

iii. Water Losses

The difference between System Input Volume and Authorized Consumption. Water losses can be considered as a total volume for the whole system, or for partial systems such as transmission or distribution...
Figure 1 An illustration of a meter by pass

<table>
<thead>
<tr>
<th>System Input Volume (1)</th>
<th>Authorized Consumption (13)</th>
<th>Billed Authorized Consumption (10)</th>
<th>Billed Metered Consumption (2)</th>
<th>Billed Unmetered Consumption (3)</th>
<th>Revenue Water (17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unbilled Authorized Consumption (11)</td>
<td>Unbilled Metered Consumption (4)</td>
<td>Unbilled Unmetered Consumption (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apparent (Commercial) Losses (15)</td>
<td>Unauthorized Consumption (16)</td>
<td>Metering Inaccuracies & Data Handling Errors (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Real (Physical) Losses (12)</td>
<td>Leaks (7)</td>
<td>Bursts (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leakage & Overflows at storage Tanks (9)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Losses (14)

- Real (Physical) Losses (12)
- Apparent (Commercial) Losses (15)
- Unbilled Authorized Consumption (11)
- Billed Authorized Consumption (10)
- Unauthorized Consumption (16)
- Metering Inaccuracies & Data Handling Errors (6)
- Leaks (7)
- Bursts (8)
- Leakage & Overflows at storage Tanks (9)
schemes, or individual zones. Water Losses consist of Physical Losses and Commercial

iv. **Billed Authorized Consumption**

Those components of Authorized Consumption which are billed and produce revenue (also known as Revenue Water)

\[
\text{Billed Authorized Consumption} = \text{Billed Metered Consumption} + \text{Billed Unmetered Consumption}
\]

v. **Unbilled Authorized Consumption**

Those components of Authorized Consumption which are legitimate but not billed and therefore do not produce revenue.

\[
\text{Unbilled Authorized Consumption} = \text{Unbilled Metered Consumption} + \text{Unbilled Unmetered Consumption}
\]

vi. **Apparent (Commercial) Losses**

Includes all types of inaccuracies associated with customer metering as well as data handling errors (meter reading and billing), plus unauthorized consumption (theft or illegal use). Commercial losses may also be referred to as Apparent Losses or Non-Technical Losses.

vii. **Real (Physical) Losses**

Physical water losses from the pressurized system and the utility’s storage tanks, up to the point of customer’s meter. Physical losses are also referred to as Real losses or Technical losses.
viii. **Billed Metered Consumption**

All metered consumption which is also billed. This includes all groups of customers such as domestic, commercial, industrial or institutional.

ix. **Billed Unmetered Consumption**

All billed consumption which is calculated based on estimates or norms but is not metered.

x. **Unbilled Metered Consumption**

Metered Consumption which is for any reason unbilled

xi. **Unbilled Unmetered Consumption**

Any kind of Authorized Consumption which is neither billed nor metered

xii. **Unauthorized Consumption**

Any unauthorized use of water. This may include illegal water withdrawal from hydrants (for example for construction purposes), illegal connections, bypasses to consumption meters or meter tampering.

xiii. **Customer Metering Inaccuracies and Data Handling Errors**

Commercial water losses caused by customer meter inaccuracies and data handling errors in the meter reading and billing system
xiv. **Leaks**

Water lost through leaks

xv. **Bursts**

Water lost through bursts

xvi. **Over flows and leaks at Storage Tanks**

Water lost through overflows and/or leakage of water storage facilities.

xvii. **Revenue Water**

Those components of Authorized Consumption which are billed and produce revenue (also known as Billed Authorized Consumption)

\[
\text{Revenue Water} = \text{Billed Metered Consumption} + \text{Pilled Metered Consumption}
\]

xvii. **Non-Revenue Water**

Those components of System Input which are not billed and do not produce revenue.

\[
\text{Non Revenue Water} = \text{Unbilled Authorized Consumption} + \text{Physical Losses} + \text{Commercial Losses}
\]
2.3 Importance of Computing the Water Balance

Developing a water balance is of paramount importance for the following reasons:

i. It serves as a framework for assessing a utility’s water loss situation

ii. Calculating the water balance

- Reveals availability/reliability of data and level of understanding
- Creates awareness of problems/issues
- Gives direction of improvements

iii. It also serves as a tool for communication and benchmarking

iv. Above all it provides significant guidance required for purposes of prioritizing attention and investments of limited resources.

As one Technical Manager in NWSC once said ‘fighting NRW without a clear indication of where the problem is like a patient who goes to the hospital and simply tells a Doctor that He/She is not well without highlighting what or where the problem is’
2.4 Benefits of Non Revenue Water Reduction

The primary objective of developing the Water Balance is to be able to effectively prioritize investments and effectively reduce NRW. The following benefits accrue from the reduction of NRW:-

i. Cleaner database and increased revenues

ii. More water available for consumption

iii. Cost reduction – less chemicals and electricity – optimized production

iv. Deferred need for investments to increase production capacity

v. Reliable demand projections

vi. Optimized operation of the distribution system
<table>
<thead>
<tr>
<th>Figure 2</th>
<th>Water Balance Flow Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Input Volume</td>
<td>363,000m³</td>
</tr>
<tr>
<td>Authorized Consumption</td>
<td>2,179,502m³</td>
</tr>
<tr>
<td>Water Losses</td>
<td>934,386m³</td>
</tr>
<tr>
<td>Billed Authorized Consumption</td>
<td>2,140,294m³</td>
</tr>
<tr>
<td>Unbilled Authorized Consumption</td>
<td>39,208m³</td>
</tr>
<tr>
<td>Apparent (commercial) Losses</td>
<td>687,629m³</td>
</tr>
<tr>
<td>Real (physical) Losses</td>
<td>246,757m³</td>
</tr>
<tr>
<td>Unauthorized use=(6)-(10)</td>
<td>612,922m³</td>
</tr>
<tr>
<td>Bursts</td>
<td>143,084m³</td>
</tr>
<tr>
<td>Unbilled Unmetered Consumption</td>
<td>15,569m³</td>
</tr>
<tr>
<td>Unbilled Metered Consumption</td>
<td>23,693m³</td>
</tr>
<tr>
<td>Unbilled Authorized Consumption</td>
<td>39,208m³</td>
</tr>
<tr>
<td>Unbilled Unmetered Consumption</td>
<td>15,569m³</td>
</tr>
<tr>
<td>Real (physical) Losses</td>
<td>246,757m³</td>
</tr>
<tr>
<td>Leakage and Overflows at storage tanks</td>
<td>0m³</td>
</tr>
<tr>
<td>Leaks</td>
<td>103,673m³</td>
</tr>
<tr>
<td>Busts</td>
<td>143,084m³</td>
</tr>
<tr>
<td>Revenue Water</td>
<td>2,140,294m³</td>
</tr>
<tr>
<td>Non-Revenue Water</td>
<td>973,594m³</td>
</tr>
</tbody>
</table>

(1) Billed Authorized Consumption 2,140,294m³
(2) Billed Unmetered Consumption 6,160m³
(3) Billed Authorized Consumption 2,179,502m³
(4) Billed Unmetered Consumption 2,134,134m³
(5) Authorized Consumption 2,179,502m³
(6) Unbilled Authorized Consumption 39,208m³
(7) Unbilled Metered Consumption 23,693m³
(8) Unbilled Unmetered Consumption 15,569m³
(9) Unbilled Authorized Consumption 39,208m³
(10) Unbilled Metered Consumption 23,693m³
(11) Unbilled Unmetered Consumption 15,569m³
(12) Apparent (commercial) Losses 687,629m³
(13) Real (physical) Losses 246,757m³
(14) Unauthorized use=(6)-(10) 612,922m³
(15) Metering Inaccuracies 74,707m³
(16) Real (physical) Losses 246,757m³
(17) Revenue Water 2,140,294m³ 68.7%
(18) Non-Revenue Water 973,594m³ 31.3%
2.5 Practical Water Audit Report Writing and understanding The Water Balance

In computing a water audit it is preferred to follow the sequence as indicated above i.e. (1) to (18).

System Input Volume (1)

Volume of *treated water sent to the systems network*. Note: *Not water produced*. Always subtract service and back wash water and ensure that your system input Volume is equal to the water you send from the plant to the distribution system.

Metered System (May be surface water, gravity water source, borehole etc.)

If your water sent to the system is metered, simply take readings at the beginning of month and end of month (System input Volume = Reading at end of month – Reading at beginning of month). Note that the meters should be checked to ensure that the efficiency is within acceptable error i.e. +/- 8%. Otherwise you must invoke the correction factors.

Un metered system (May be surface water, gravity water source, borehole etc.)

If the water sent to your system is not metered, then use the estimates of pump production capacities.
Water sent to system = Production capacity of pump per hour x hours run through the month

Note: the efficiency of the pumps must be put into consideration. The most commonly used pumps are the Reciprocating and centrifugal pumps. The Reciprocating Long stroke engine pumps have an efficiency of 85% while the smaller pumps of the same category have only up to 40% Efficiency. The Centrifugal pumps have efficiency between 40% and 85% and are more efficient if the head and discharge are maintained within narrow limits.

Therefore assuming an efficiency of 80% for instance gives you; a production;

Production = $\frac{80}{100} \times \text{Capacity of production pump(s)}$

i.e. System Input Volume = ($\text{Capacity of pump/hour} \times \text{Hours run through the month}$) \times $\left(\frac{80}{100}\right)$ – (Service water if any) m^3

System Input Volume = $\left[\left(\text{Pump Capacity per hr} \times \text{Hours run through the month}\right) \times \frac{80}{100}\right]$ $- \left[\text{Service Water if any}\right]$ m^3

Billed Metered Consumption (8)

This is the water that has been metered and billed for the month. It is paramount to always liaise with the billing / commercial department to acquire this information on a monthly basis. If none of your customers is metered simply write a zero in the water balance sheet and proceed.
Billed Unmetered Consumption (9)

This is water that is billed though not metered. **Water billed on flat rate or estimate.** Quantify this water in cubic meters.

Revenue Water (17)

= Water from which revenue is realized which = Billed Metered Consumption (8) + Billed Unmetered Consumption (9)

Non Revenue Water (18)

= Water from which revenue is not realized which = System Input Volume (1) - Revenue Water (17)

Unbilled Metered Consumption (10)

This is water that is not billed but is metered. It could include metered fire hydrants (Used by the Police Fire fighting Department), water that is metered and is supplied to staff houses yet not billed, water that is metered and supplied to the water service providers premises and is not billed etc.

Unbilled Unmetered Consumption (11)

This is water that is not billed and is not metered as well. It is lost during repairs and while effecting new connections.
Water lost through new connections

= Water lost per connection (in litres) x Number of new connections
e.g. 6 litres x 10 connections = 60 litres

Water lost through repairs

= Average Water lost per repair (litres) x Number of repairs e.g. 40 litres x 100 repairs = 4,000 litres

Total Water lost = 60 litres + 4,000 litres = 4,060 litres

Divide the total number of litres by 1000 to convert the loss into cubic meters. = 4060/1000 = 4.060m³

Metering Inaccuracies (13)

This has two aspects (Meter under registration and under estimation of consumption for un-metered customers)

Meter under registration

In general meters like any other machine depreciate with time. It is therefore important to sample a number of your meters to be able to know the average efficiency of your meters. If you have ultrasonic flow meters, go ahead and use them to sample the efficiency of your water meters. If you do not have assorted equipment, use a 20 liter jerry can to determine the efficiency of your metering.
Using the 20 liter Jerry can to determine efficiency of a water meter

- Ensure that all other taps are closed
- Take initial reading of meter in litres
- Let water into a 20 liter jerry can up to the 20 liter mark
- Take reading of meter again in litres.
- Subtract Initial reading from final reading

Efficiency of meter = \((\text{final Reading} - \text{Initial Reading}) \times 100/20\)

If you find that the average efficiency is for instance 80%, it implies that the billed metered consumption in (2) above is only 80 % of actual water consumed.

\[\text{Billed Metered Consumption divide by Actual Water Consumed} = 80 \text{ over}100\]

\[\text{Actual Water Consumed} = \text{Billed Metered Consumption}(100/80)\]

Therefore Water lost due to meter under registration

\[\text{Actual Water Consumed} - \text{Billed Metered Consumption}\]

Under estimation of consumption for un-metered customers

Most times we under estimate consumption from un-metered accounts or from customers billed on a flat rate. Imagine if you had to pay a flat rate for your mobile phone services! How much would you talk? The same applies to the water consumer!
Estimating water lost through under estimation

- Select a number of customers who are on flat rate.
- Install meters on their service lines without their knowledge
- Take readings at the end of one month to determine the customer’s actual consumption.

Water lost through under estimation

\[\text{Water lost through under estimation} = (\text{Average Customer’s actual consumption} - \text{Flat Rate}) \times \text{Number of customers on Flat Rate} \]

Total water lost through metering inaccuracies = total of the two aspects above

Leaks (14)

The volume of the water lost by leakage will depend largely on a number of factors i.e.

- The pressure in the network.
- whether the soil allows water to be visible at the surface
- The “awareness” time (how quickly the loss is noticed);
- The repair time (how quickly the leakage is repaired)
- The size of leak hole.
Determining water lost therefore requires significant record keeping. A leak record book is a handy requirement under these circumstances. The information captured should include the following:

- **Leak No** – This is a sequential number given to the leaks. This enables one to easily tell the number of leaks per month.
- **Zone (Area)** – to back up decision making in future.
- **Area of Leak mm²** – Water lost is dependent on the area; small holes will let out less water under the same pressure than a bigger hole. This can be by simply measuring the diameter of a hole in mm then used the calibrated table in Appendix one to determine area. If the hole is square then one has to calculate the area manually. Water lost is then got from the table by matching area against pressure in bars. Note that 1Bar = 10 water meter height.
- **Average Pressure**. If you have equipment to establish pressure in the area then do so per zone/area. Otherwise use estimates of height of supply reservoirs per zone. 1bar = 10m
- **Date and Time of occurrence** – The date and time when the leak was first noticed (Note: Not date reported)
- **Date Time of repair of leak** – The date and time when leak was repaired.
- **Water loss time** – The time through which water was lost = Hours between occurrence and repair.
- **Water lost in litres / minute from the table** *(See Appendix I)*
- **Water Lost in Cubic Meters**
It is normally tedious to calculate water lost per leak. It is therefore advisable to establish some helpful assumptions i.e.

- Average area of leak - measure area of leaks for at least two month and come up with average
- Average water pressure - come up with average pressure

Total Water Lost (litres) = (Water lost per minute x average number of minutes between occurrence and repair) x number of leaks that occurred during the month

You must state the average pressure used in the computation.

Bursts (15)

Similar to leaks above but water loss must be calculated for each burst. Water losses through bursts can vary significantly.

Leaks and Overflows at Storage Facilities (16)

This component has two aspects

- **Water loss through leakage at Storage tank**: This can be achieved by simply estimating water lost per hour through leakage at the storage tank(s). Thereafter, multiply this by 24 hours a day and then by 30 days a month.

- **Overflows at Storage Tanks**: Note the hours when you had overflows at the tank and estimate water loss per hour. Water lost
\[\text{Water Lost} = \text{Estimated loss per hour} \times \text{total number of hours of over flow through the month.} \]

Unauthorized Consumption (12)

This is the water stolen either through illegal connection, by-passing the meter, Removal and fetching water before the meter and/or reversal of water meter. This one is difficult to estimate that is why it is got by subtracting the now known UFW/NRW components from the total NRW/UFW figures i.e. \(18 - (10 + 11 + 13 + 14 + 15) \).

2.6 Example of a Typical Water Balance of Water Balance Report

A Monthly Water audit report by use of Water Balance sheet should look like the one below with three main aspects:-

- Volumes of water per component.
- Corresponding percentages as well.
- A back up report (water balance report) explaining how you reached at each of the figures above (in i and ii).
2.6.1 Typical water balance report – Input data

System Input Volume (1)

Assume we have two water supply plants A and B. A is metered while B is not metered.

Treatment Plant A

- The meter reading taken reflected a production of 30,000 m3. The water used for backwashing is taped after the bulk production meter. For the month of September we used 3,000 m3 for back washing. The total volume of water sent to the network from plant A = 30,000 – 3,000 = 27,000 m3.

Treatment Plant B

- This plant has two pumps. The capacity of each pump is 500 m3 per hour. The pumps are run for 16 hours each per day. Assume the efficiency of the pumps is about 70%. This implies that these pumps can only produce 70% of their capacity.

70% of the 500 capacity = X; $X/500=70/100$ i.e $X = (70/100) \times 500$

Actual Production = 350 m$^3 \times 2$ pumps \times 16 hours a day \times 30 days = 336,000 m3
<table>
<thead>
<tr>
<th>System Input Volume 363,000m³</th>
<th>Authorized Consumption 153,480m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billed Authorized Consumption 150,000m³</td>
<td>Billed Metered Consumption 142,000m³</td>
</tr>
<tr>
<td>Unbilled Authorized Consumption 3,480m³</td>
<td>Billed Unmetered Consumption 8,000m³</td>
</tr>
<tr>
<td>Unbilled Authorized Consumption 3,480m³</td>
<td>Unbilled Metered Consumption 3,000m³</td>
</tr>
<tr>
<td>Unbilled Authorized Consumption 3,480m³</td>
<td>Unbilled Unmetered Consumption 480m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Losses 209,520m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent (commercial) Losses 208,998m³</td>
</tr>
<tr>
<td>Unbilled Authorized Consumption 3,480m³</td>
</tr>
<tr>
<td>Unauthorized use 169,298m³</td>
</tr>
<tr>
<td>Metering Inaccuracies 39,700m³</td>
</tr>
<tr>
<td>Real (physical) Losses 552m³</td>
</tr>
<tr>
<td>Leaks 432m³</td>
</tr>
<tr>
<td>Busts 90m³</td>
</tr>
<tr>
<td>Leakage and Overflows at storage tanks 0m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Water 150,000m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>42%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Revenue Water 213,000m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>58%</td>
</tr>
</tbody>
</table>
Billed Metered Consumption (8)

Assume that only 400 of our customers are metered, 100 of which are commercial. The total volume of water consumed by the metered accounts for the month of September 2007 = **142,000 m³**

Billed Unmetered Consumption (9)

The largest number of our customers are billed on flat rate i.e. 1000 customers. Of the 1000, 300 are commercial while 700 are domestic.

Flat rate for domestic is 5 m³ per month while the flat rate for commercial is 15 m³ per month.

Revenue Water (17)

Non Revenue Water / Unaccounted for Water (18) = 363,000m³ – 150,000m³ = 213,000m³

Unbilled Metered Consumption (10)

Assume your staff consumed water and were not billed. In total they consumed 2000m³ of water for the month of September 2007. Assuming we also serve the police fire department through one metered fire hydrant; they consumed 1000 m³ for the month of September

Total Unbilled metered = 2,000 + 1,000 = 3,000m³
Unbilled Unmetered Consumption (11)

Assuming you also serve the police fire department through 4 unmetered fire hydrants. One week we hired someone to record the number of truck fetched from these fire hydrants. It was noted that up to 15 trucks are fetched from each of these fire hydrants per week. Each truck has a capacity of 2 m³; $=15 \text{ truck} \times 4 \text{ fire hydrants} \times 4 \text{ weeks} = 240 \text{ trucks per month}$

Total water consumed $= 2\text{m}^3 \times 240 \text{ trucks} = 480\text{m}^3$

Metering Inaccuracies (13)

Meter Performance inefficiency

We sampled our meters in the field and got to know that they are about 80% efficient. That means that the water measured by the water meters i.e. Billed metered consumption of 142,000 m³ is only 80% of the actual water consumed.

$142,000/\text{Actual consumed} = 80/100$

Actual consumed $= 142,000 \times 100/80$

Actual consumed $= 177,500\text{m}^3$

Water Lost $= 177,500 - 142,000 = 35,500\text{m}^3$

Water lost due to under registration

We quietly installed meters at premises that are on flat rate recently and noted that the domestic customers were consuming 8 units on average
and not 5 units as assumed, commercial customers were consuming 22 units and not 15 as assumed. This means that for each domestic customer on flat rate we lose 3 m3.

$$\text{Water Lost} = 3\text{m}^3 \times 700 \text{domestic customers} = 2,100\text{m}^3$$

For each commercial customer on flat rate we lose 22-15 = 7 units.

$$\text{Total Water lost due to metering in accuracies} = 35,500 + 2,100 + 2,100 = 39,700\text{m}^3$$

Leaks (14)

The number of leaks reported for the month of September 2007 was 90. The average diameter of the leaks was 3mm. The average time between awareness and repair was about 8 hours = 480 minutes – this is attributed to lack of repair materials and limited transport. The average pressure in the network was about 35 meters = 3.5 bars.

From table in appendix one;

- Estimated water loss = 10l/min x 90 leaks x 480 minutes at an average pressure of 2.7 bars = 432,000 litres
- Convert litres to m3 = 32,000/1,000 = 432m3
Bursts (15)

There was only one burst in the month of September 2007. The burst lasted three hour and the estimated water loss was \(30 \text{ m}^3\) per hour.

Total Water lost = 30 x 3hrs = 90m³

Leaks and Overflows at Storage Facilities (16)

Unlike the previous month someone was hired to monitor water levels at the storage tanks. The leaks were all repaired in august 2007 and hence there were no over flow and leakage at the water storage tanks.

Total Water lost = 0 m³
2.6.2 Typical water balance report – Results

From the computations made from figure 3 - Typical water balance chart the result are as follows:

<table>
<thead>
<tr>
<th>Component (No.)</th>
<th>Value computed (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un authorized Consumption (12)</td>
<td>169,298</td>
</tr>
<tr>
<td>Billed Authorized Consumption (4)</td>
<td>150,000</td>
</tr>
<tr>
<td>Un billed Authorized Consumption (5)</td>
<td>3,480</td>
</tr>
<tr>
<td>Real (Physical Losses) (7)</td>
<td>522</td>
</tr>
<tr>
<td>Authorized Consumption (2)</td>
<td>153,480</td>
</tr>
<tr>
<td>Water Losses (3)</td>
<td>209,520</td>
</tr>
<tr>
<td>Apparent Losses (6)</td>
<td>208,998</td>
</tr>
</tbody>
</table>

2.7 Making use of the water balance

As one develops the water balance report loop holes/ critical areas of improvement in the water supply system should right away be identified and corrective activities or projects initiated. For instance;

System Input Volume

It is desired that all system input volume be metered with meters being regularly calibrated. If your system input volumes are not fully metered,
then initiate a project to accurately meter all your production and ensure regular calibration of water meters.

Billed Metered Consumption

100% metering is the most desired position. If some of your customers are not metered then initiate to have that done.

Billed Unmetered Consumption

The desired position is to have 0 cubic under this category. If you are billing your customers on flat rate, it’s high time you initiate a project to meter all your customers. Otherwise it is difficult to pin point a figure to where your water may be going.

Unbilled Metered Consumption

It is desired that you meter all your unbilled authorized consumption. For purposes of accountability and full knowledge of how much of your water is where and consumed by whom. If you are serving unmetered water to the police fire department, your staff quarters etc. you better start by metering this water.

Unbilled Unmetered Consumption

It is desired that you have zero unbilled unmetered consumption.
Metering Inaccuracies

It is desired that you replace all meters which are 5 to 7 years old, since the level of inaccuracy increases with the meter age. The Oldest meters in your network should therefore be between 5 and 7 years at most.

Leaks

It is desired that you check your entire network at least twice a year – by leak detection equipment. Conduct visible leak searching at least twice a month for the entire pipe network if the leak in a given area is so frequent. You may consider pipe replacement and/or reduction of pressure through network balancing or installation of pressure reducing valves.

Bursts

Is the pipe design suitable for the pressure?

Leaks at Storage Facilities

This is not expected to contribute to NRW every month. Simply monitor the condition of the storage reservoir and carry out remedial works whenever the need arises.
Overflows at Storage Facilities

You may have to replace Ball valves. You may have to keep an attendant stationed at the storage tanks or inspecting the levels at intervals, and communicate to the pumping station staff on to stop pumping and hence minimize loss.

Unauthorized Consumption / Water stolen

The desired position is to have a fully flagged team and/or unit that addresses the issue of illegal usage on full time basis.
CHAPTER 3

Key Results and Performance Indicators

Checking the pump performance. Photo © UN-Habitat
3.1 Key Result Areas

- Streamlined system of determination of Non Revenue Water (NRW)
- Streamlined system of identification of problem areas in the water supply system for targeted remedial measures
- Accurate determination of Non Revenue Water (NRW)
- Implementation of the procedures highlighted in the manual will result in reduction of Operations and Maintenance costs

3.2 Performance Indicators

To effectively carry out water audits and a water balance the following performance indicators need to be determined:

<table>
<thead>
<tr>
<th>Performance Indicators for Water Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>
Performance Indicators for Water Balance continuation...

<table>
<thead>
<tr>
<th>No.</th>
<th>Performance Indicators</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>New Water Connections Made</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>No. of Leakages Reported</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Average response time to Leakages</td>
<td>Hrs</td>
</tr>
<tr>
<td>13</td>
<td>No. of bursts Reported</td>
<td>No.</td>
</tr>
<tr>
<td>14</td>
<td>Average response time to bursts</td>
<td>Hrs</td>
</tr>
<tr>
<td>15</td>
<td>Meter Accuracy</td>
<td>%</td>
</tr>
<tr>
<td>16</td>
<td>Inaccuracies due to flat rate billing</td>
<td>%</td>
</tr>
<tr>
<td>17</td>
<td>Average Pressures in the Network</td>
<td>Bars</td>
</tr>
<tr>
<td>18</td>
<td>No of overflows from reservoirs</td>
<td>No</td>
</tr>
<tr>
<td>19</td>
<td>Average duration of overflows from reservoirs</td>
<td>Hrs</td>
</tr>
</tbody>
</table>

3.3 Monitoring and Evaluation of Indicators

The monitoring and evaluation (M & E) during the implementation of the water balance manual shall be through M&E sub-committees established within the utility. The sub-committees will regularly move, at an interval to be determined by management, around the network to take measurements for determination of qualitative data. Records of quantifiable performance indicators should be maintained to
facilitate accurate assessment and determination of variables for NRW computation.

The sub-committees will then meet on a weekly basis to discuss constraining issues and strive to find solutions. The entire M&E team will then meet bi-weekly to have a holistic overview of the implementation status. At each stage of the meeting, the agreed way forward on the constraints and achievements will be communicated to the respective operating sections.

The evaluation of the performance of the water balance system shall be carried out at the end of each month and each sub-committee shall highlight constraints experienced and proposed way forward, which are then discussed in a meeting chaired by the Technical In-charge.
CHAPTER 4

Requirements for Successful Implementation

Community joint effort in digging trenches for water pipes. Photo © UN-Habitat
4.1 Equipment

Flow meter – for measuring flow if the production is not metered. Flow meter for checking accuracy of the production meters if metered. If you can not own the equipment then hire a service provider to help you measure production or determine accuracy of the production meters. Relying on the capacity of pumps is most often misleading as the pumps’ actual capacity may be much lower or higher.

Consumer meters are very important in determining the billed metered.

4.2 Human Resource & Responsibilities

The task of preparing a water audit report is better done by someone with a supervisory role. One with an overall understanding and responsibility over the network. However where there isn’t sufficient capacity an available responsible staff can be assigned the task of preparing the water balance report. The bottom line is that the person preparing the report MUST have an understanding of Water Audit and the water balance.
The responsibilities of such a person should entail;

- Collecting data on the different components of the water balance i.e.
 - Total production of the month (with clear understanding on how the figures were reached at)
 - Total volume Metered and Billed
 - Total volume billed though unmetered (Billed on estimate for unmetered accounts) etc.

- Compare the NRW/UFW contributing factors and inform management on trends observed.

- Conceptualize / identify, develop and ensure quality implementation of Non Revenue Water projects.

- Advice and or make recommendations to management concerning NRW reduction
Appendices
Formula Flow = 2.8xArea x square Root of (148x Pressure): Flow (gallons per minute), Area (Square inches) and Psi

Pressure in (Pounds per Square Inch (psi) and (Bars); 1 Bar = 14.5038 psi
Flow in Gallons per minute and Litters per minute; 1 litter = 0.22 gallons

<table>
<thead>
<tr>
<th>psi</th>
<th>Bars</th>
<th>psi</th>
<th>Bars</th>
<th>psi</th>
<th>Bars</th>
<th>psi</th>
<th>Bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>0.07</td>
<td>20.00</td>
<td>1.38</td>
<td>40.00</td>
<td>2.76</td>
<td>60.00</td>
<td>4.14</td>
</tr>
<tr>
<td>80.00</td>
<td>5.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Area of leak

Square Inches

Area of leak mm Squared

1" Sq = 645.16 sq mm

Diameter of Circle (mm)

A = (DSq)/4

Gallons per minute (gpm) or Liters per minute

<table>
<thead>
<tr>
<th>Gallons</th>
<th>Liters</th>
<th>Gallons</th>
<th>Liters</th>
<th>Gallons</th>
<th>Liters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>3.2258</td>
<td>0.50</td>
<td>2.27</td>
<td>8.00</td>
<td>36.36</td>
</tr>
<tr>
<td>0.010</td>
<td>6.4516</td>
<td>1.10</td>
<td>5.00</td>
<td>1.50</td>
<td>6.82</td>
</tr>
<tr>
<td>0.025</td>
<td>16.129</td>
<td>2.70</td>
<td>12.27</td>
<td>3.80</td>
<td>17.27</td>
</tr>
<tr>
<td>0.050</td>
<td>32.258</td>
<td>5.40</td>
<td>24.55</td>
<td>7.60</td>
<td>34.55</td>
</tr>
<tr>
<td>0.075</td>
<td>48.387</td>
<td>8.10</td>
<td>36.82</td>
<td>11.00</td>
<td>50.00</td>
</tr>
<tr>
<td>0.100</td>
<td>64.516</td>
<td>11.00</td>
<td>50.00</td>
<td>15.00</td>
<td>72.73</td>
</tr>
<tr>
<td>0.200</td>
<td>129.032</td>
<td>22.00</td>
<td>100.00</td>
<td>30.00</td>
<td>141.50</td>
</tr>
<tr>
<td>0.300</td>
<td>193.548</td>
<td>33.00</td>
<td>150.00</td>
<td>45.00</td>
<td>213.00</td>
</tr>
<tr>
<td>0.400</td>
<td>258.064</td>
<td>44.00</td>
<td>200.00</td>
<td>60.00</td>
<td>284.50</td>
</tr>
<tr>
<td>0.500</td>
<td>322.580</td>
<td>55.00</td>
<td>250.00</td>
<td>75.00</td>
<td>356.00</td>
</tr>
<tr>
<td>0.600</td>
<td>387.096</td>
<td>66.00</td>
<td>300.00</td>
<td>90.00</td>
<td>427.50</td>
</tr>
<tr>
<td>0.700</td>
<td>451.612</td>
<td>77.00</td>
<td>350.00</td>
<td>105.00</td>
<td>500.00</td>
</tr>
<tr>
<td>0.800</td>
<td>516.128</td>
<td>88.00</td>
<td>400.00</td>
<td>120.00</td>
<td>572.50</td>
</tr>
<tr>
<td>0.900</td>
<td>580.644</td>
<td>99.00</td>
<td>450.00</td>
<td>135.00</td>
<td>645.00</td>
</tr>
<tr>
<td>1.000</td>
<td>645.160</td>
<td>110.00</td>
<td>500.00</td>
<td>150.00</td>
<td>717.50</td>
</tr>
<tr>
<td>1.100</td>
<td>709.676</td>
<td>121.00</td>
<td>550.00</td>
<td>165.00</td>
<td>790.00</td>
</tr>
<tr>
<td>1.200</td>
<td>774.192</td>
<td>132.00</td>
<td>600.00</td>
<td>180.00</td>
<td>862.50</td>
</tr>
<tr>
<td>1.300</td>
<td>838.708</td>
<td>143.00</td>
<td>650.00</td>
<td>195.00</td>
<td>935.00</td>
</tr>
<tr>
<td>1.400</td>
<td>903.224</td>
<td>154.00</td>
<td>700.00</td>
<td>210.00</td>
<td>1007.50</td>
</tr>
<tr>
<td>1.500</td>
<td>967.740</td>
<td>165.00</td>
<td>750.00</td>
<td>225.00</td>
<td>1080.00</td>
</tr>
<tr>
<td>1.600</td>
<td>1032.256</td>
<td>176.00</td>
<td>800.00</td>
<td>240.00</td>
<td>1152.50</td>
</tr>
<tr>
<td>1.700</td>
<td>1096.772</td>
<td>187.00</td>
<td>850.00</td>
<td>255.00</td>
<td>1225.00</td>
</tr>
<tr>
<td>1.800</td>
<td>1161.288</td>
<td>198.00</td>
<td>900.00</td>
<td>270.00</td>
<td>1312.50</td>
</tr>
<tr>
<td>1.900</td>
<td>1225.804</td>
<td>209.00</td>
<td>950.00</td>
<td>285.00</td>
<td>1395.00</td>
</tr>
<tr>
<td>2.000</td>
<td>1290.320</td>
<td>220.00</td>
<td>1000.00</td>
<td>300.00</td>
<td>1477.50</td>
</tr>
<tr>
<td>2.500</td>
<td>1612.900</td>
<td>270.00</td>
<td>1250.00</td>
<td>375.00</td>
<td>1912.50</td>
</tr>
<tr>
<td>3.000</td>
<td>1935.480</td>
<td>320.00</td>
<td>1500.00</td>
<td>450.00</td>
<td>2347.50</td>
</tr>
<tr>
<td>4.000</td>
<td>2580.64</td>
<td>400.00</td>
<td>2000.00</td>
<td>600.00</td>
<td>3125.00</td>
</tr>
</tbody>
</table>

Conversion:

- 1 Gallon = 3.7854 Liter
- 1 Bar = 14.5038 psi
- 1 psi = 0.006805 Bar
- 1 Litter = 0.22 Gallons

Notes:

1. The formula for calculating flow is based on the equation: Flow = 2.8 x Area x square Root of (148 x Pressure).
2. The table provides conversion factors for pressure and flow measurements between psi and Bars, and gallons and liters.
3. The area of the leak is calculated using the formula: Area = (Diameter^2) / 4, where Diameter is in millimeters.
4. The diameter of the circle is calculated using the formula: Diameter = 2 x Radius, where Radius is in millimeters.
5. The volume flow rate is calculated using the formula: Volume = Area x Height, where Height is in inches.
6. The density of water is assumed to be 1 g/mL.
7. The table includes data for pressure values ranging from 0.005 to 2.000 psi and 0.005 to 2.000 Bars, and corresponding flow rates in gallons per minute and liters per minute.
8. The table also includes data for pressure values ranging from 0.005 to 2.000 psi and 0.005 to 2.000 Bars, and corresponding area of leak in square inches and millimeters squared.
9. The table includes data for the diameter of the circle in millimeters, calculated using the formula: Diameter = 2 x Radius, where Radius is in millimeters.
10. The table includes data for the volume flow rate in gallons per minute and liters per minute, calculated using the formula: Volume = Area x Height, where Height is in inches.
WATER BALANCE PROCESS FLOW CHART

1. System Input Volume 3,113,888m³ 100%

2. Authorised Consumption 2,140,294 m³

3. Water Losses 934,386 m³

4. Billed Authorized Consumption 2,140,294 m³

5. Un Billed Authorized Consumption 39,208 m³

6. Apparent (Commercial Losses) 687,629 m³

7. Real (Physical) Losses 246,757 m³ = 26.4%

8. Revenue Water 2,140,294 m³

9. Non Revenue Water 973,594 m³ 31.3%
Billed Authorized consumption 2,140,294 m3

Un Billed Authorized Consumption 39,208 m3

Apparent (Commercial) Losses 687,629 m3

Real (Physical) Losses 246,757 m$^3 = 26.4\%$

Revenue Water 2,140,294 m3

Non Revenue Water 973,594 m$^3 = 31.3\%$

Unbilled metered Consumption 23,019 m3

Unbilled Unmetered Consumption 15,569 m3

Unauthorised use = (6) – (10) 612,992 m3

Metering Inaccuracies 74,917 m3

Leaks 103,673 m3

Bursts 143,084 m3

Tank Overflows 143,084 m3

Unbilled Authorized Consumption 39,208 m3
Revenue Water
2,140,294 m³

Non Revenue Water
973,594 m³ 31.3%

Billed Metered Consumption 2,134,134 m³

Unbilled Metered Consumption 15,569 m³

Unauthorised use = (15) – (6) 612,992 m³

Leaks 103,673 m³

Bursts 143,084 m³

Tank Overflows 143,084 m³

Unbilled Unmetered Consumption 23,639 m³

Estimated/unbilled consumption from repairs, new connections, flushing etc

Meter readings from unbilled premises e.g. fire hydrants

Estimated water lost through leakages at the reservoir/tank

Under estimation of unmetered accounts

To be estimated based on;
- number of bursts, pressure in the network, repair time & size of bursts
- number of bursts, pressure in the network, repair time & size of leaks

To be estimated based on:
- the network’s repair time & size of leaks
- the network’s repair time & size of bursts

Estimated water loss due to metering inaccuracies 74,507 m³

Estimated water from unbilled premises, e.g. fire hydrants
After developing a policy, it is important to notify the public about your position as a water service provider on the issue of illegal use of water. This can be done through all the modes of communication i.e. Radio announcements, public gatherings, newspapers and distribution of fliers.

Amnesty

After the community has understood your position on illegal usage, the next stage is to start cleaning up. The number of people of illegal cases may be so many that dealing with each of them legally may be uneconomical. Amnesty is therefore paramount at this stage. An amnesty period of three month is realistic, during which customers who declare that they have illegal connections will not be penalized. For instance give the following conditions, the customers can be advised to:

i. Illegal Connection – Apply for a new connection, avail all necessary documents and then we shall formalize the connection.

ii. Illegal reconnection – you will be excused from the fines – you will simply clear your water bill to zero

iii. Meter By Pass – We shall simply remove the meter by pass (But relocate the meter to out of the premise if safe or close to the perimeter wall – to minimize the temptation)

iv. Meter tampering – you will pay a small fee for replacement of the meter (Quote the cost of the meter)

v. Meter reversal and fetching before the meter - We shall correct the meter position (But remove stop cork for such