The Fukuoka Method in action at the Hulene Landfill, Mozambique

—Waste landfill improvement project—
Hulene landfill outline
- Area: about 17ha (20 ha)
- Height: about 20 m (depth unknown)
- Slope: east→west
- Start of operation: circa 1970
- Operation hours: 24 h
- Waste received: about 1200 ton/day

Improvement Project
Nov 2019 until Jul 2020
Slope failure mechanism at the Hulene landfill

Uncompacted common soil on slope

Stable slope is formed naturally (angle of repose)

Uncompacted waste on slope

Waste with various shapes tends to tangle and form lumps

Steep slopes tend to form

Increased waste weight

Rain

Source: NPO SWAN-Fukuoka
Problems caused by improper operation of the Hulene dump before the improvements

1. Unhealthy
2. Safety (Risk of slope failure)
3. Methane generation
 i. Fire
 ii. Greenhouse gas
4. Soil and water pollution due to infiltration of untreated leachate
The benefits of the Fukuoka Method (semi-aerobic landfill structure)

1. A safe and more hygienic landfill with fast stabilization
 →Reduced risks, future use of the site becomes possible
2. Reduction in the generation of the greenhouse gas methane
 →fire control, contribution to the protection of the global environment
3. Applicable in landfills in operation
4. Low cost, simple
 →Applicable in developing countries
Confirm that the distance between the edge of waste and border is more than the landfilled waste height.

Apply counterweight fill to the length equal to the landfilled waste height, starting from the edge of waste.

After application of counterweight fill, carefully remove the waste above.

Form stable slopes over the entire slope.

Slope stabilization

Financed by the Government of Japan
Suppression in the generation of methane

● Problem
In conventional dumpsites, there is great generation of methane. → occurrence of fires

◆ Improvement
Through the semi-aerobic structure, methane generation is reduced.
Application of the Fukuoka Method in existing landfills

- Even in the case of existing landfills where it is not possible to install leachate collection pipes at the bottom of the site, improvements can be achieved even with the partial application of the Fukuoka Method.
- By creating an aerobic environment near the ventilation pipes, vegetation flourishes.
 → Soil stabilization through vegetation
Improvements at the Hulene landfill

Financed by the Government of Japan

<table>
<thead>
<tr>
<th>Problem</th>
<th>Slope collapse</th>
<th>Fire</th>
<th>Soil/water pollution</th>
</tr>
</thead>
</table>
| **Cause** | Inadequate waste disposal (waste push-down, insufficient compaction) | • Large amount of methane generation due to waste decomposition activity by anaerobic bacteria
 • Use of fire by waste pickers | Insufficient leachate collection system and no installation for leachate treatment |
| **Improve-ment** | Stabilization of slope through terrace-like slopes with inclination under 26° | • By installing gas drainage pipes, semi-aerobic conditions were created in the waste masses, restricting the activity of anaerobic bacteria.
 • City officials called on the waste pickers not to use fire in the landfill | • By installing a leachate collection network, as well as a stabilization pond, leachate infiltration into the soil was reduced.
 • Through aeration, the quality of the leachate was improved |
The benefits of the Fukuoka Method (semi-aerobic landfill structure)

1. A safe and more hygienic landfill with fast stabilization → Reduced risks, future use of the site becomes possible
2. Reduction in the generation of the greenhouse gas methane → fire control, contribution to the protection of the global environment
3. Applicable in landfills in operation
4. Low cost, simple → Applicable in developing countries
Thank you for your attention.